

vers 14 February 2013

http://grwavsf.roma1.infn.it/snag/

http://grwavsf.roma1.infn.it/snag/

 2

 3

Contents

Contents ... 3

New features of Snag2 ... 5

Snag Folders .. 6

gd Class .. 7

gd2 (or DM) Class ... 8

ds Class .. 9
ds Operation .. 10

am structure .. 13

mp structure .. 14

ev / ew structure .. 15

PSC – Periodic Source Candidate ... 17
PSC Data Base ... 18

FDF – Frequency Domain Filters .. 20
FDF Operation ... 21

SFC – Simple File Format Collection.. 22
Basic SFC file format .. 24

sfc_ structure ... 26
SDS file format ... 27

SDS file operation ... 27
DDS file format .. 30
SBL file format .. 31

Structure of the sbl blocks ... 33
VBL file format .. 35

Structure of the vbl blocks ... 37
SEV file format .. 39

Compressed data formats .. 40
LogX format ... 40
Sparse vector formats .. 42

Use of SFC formats for standard Snag objects .. 44

Use of SFC formats for PSS ... 45

Data_Browser .. 47
D_B Operation .. 49

GW_Sim ... 50

 4

 5

New features of Snag2

The MatLab data analysis tool Snag started in the spring of 1998. In the
spring of 2003 it consisted of about 500 m-files (in February 2005 they are
700, excluding obsolete and user functions), but there were difficulties to
manage and develop such a number of functions. The goals of the project
were partially changed and also the basic concept of the MatLab Snag was
evolved. So it was decided to re-think some parts of the tool, and to mark the
change, it was decided to name the new Snag, Snag v.2 or Snag2. Also if now
(end of June 2003) about 300 m-files of the new Snag (that contains at that
date more than 700 m-files, about 60 of which obsolete) were written before
the year 2000.
The most evident feature of the second version of Snag is the organization of
the function folders, to manage more easily the big amount of files. In
particular only a very little number of m-files are allowed in the principal
folder snag; there is a subfolder, also named snag, containing all the m-files
related to the Snag GUI. A subfolder named projects contains, in an organized
way, all the non-general use functions: in particular the sub-subfolder gw
contains many different subfolders grouping different arguments.
Another big change is that the snf format is become obsolete, substituted by
the "sfc" formats, more easy and and with new ideas behind. The full
compatibility with the frame format is no more present (and may be it will be
never again). This because an efficient use of the frame format should be
possible with a MatLab frame library (written, with a certain effort, for the
frame version 3 and updated for version 4, but now we are at version 6…). So
to use efficiently Snag, some conversion tools are developed, to translate data
from frame to sfc.
No more classes were added (the old ones remain with little changes), but two
structures (almost classes ;-)) are added; ev (and the twin structure ew), that
deals with events, and mp (that was created in 1999 for the data_browser) that
deals with sets of sampled channels. Why structures and not classes ? In
MatLab a structure is more agile than a class, so, if there are no other
advantage, in some cases a structure can be preferable.

 6

Snag Folders

The snag m functions (about 800 in January 2004), documentation and data
files are grouped in folder:

@ds ds (data stream) class members

@gd gd (data group) class members

@gd2 gd2 (2-D data group) class members

@rg rg (data ring) class members

@rs rs (resonances) class members

am am (ARMA filters) structure functions

ev ev/ew (events) structure functions

mp mp (multi-plot) structure function

arp double array processing functions

gdproc gd processing functions

gds gds creation

serv service functions

sfc sfc (simple file format) functions

snag snag gui functions

special special functions

project different user projects functions

extern m functions and dll to access non-matlab programs

data data (like filters or spectra)

doc documentation

local localization files (not in the path)

obsolete obsolete files (not in the path)

 7

gd Class

A gd is a “group of data”, defined by an abscissa and a single value; about these data,
it is known the number. An example of a gd is a set of sampled data: if the sampling is
uniform, one can overlook the abscissa (it can be computed by the beginning value and
the sampling time), in which case we say it is a “virtual abscissa” gd (otherwise it is a
“real abscissa” gd).

The data members are

x abscissa (absent if type = 1, otherwise a column vector

y ordinate (column vector)

n length (number of data)

type = 1 for virtual abscissa gd, = 2 for real abscissa gd

ini beginning of (virtual) abscissa

dx sampling interval (e.g. “time”) - for virtual abscissa gds

capt caption

unc uncertainty on y (optional)

uncx uncertainty on x (optional)

cont control variable - normally absent (0); may be an array or

cell array, for particular uses)

 8

gd2 (or DM) Class

A gd2 (called also dm, Data Map) is a gd with a two dimension abscissa. It can

be used for bi-dimensional data, as, for example, a time frequency spectrum. It

can be used also for many uni-dimensional data groups with the same

abscissae. A gd2 can be “virtual” or “real” abscissa, but only for the “primary”

dimension; the secondary dimension is always “virtual”.

Remember that MatLab stores matrices by columns, so it should be

important to use the column index (the second) for the thing that changes

more slowly.

The data members are

x abscissa (absent if type = 1, otherwise a column vector)

y ordinate (a (n/m)*m matrix)

n total number of data

type = 1 for virtual abscissa gd, = 2 for real abscissa gd

ini beginning of (virtual) primary abscissa

dx sampling “time” (for virtual abscissa gds)

m secondary dimension

ini2 beginning of seconadary abscissa

dx2 secondary abscissa sampling

mcapt multiple captions (a cell array, case of m uni-dimensional

data)

capt caption

cont control variable - normally absent (0); may be an array or

cell array, for particular uses)

 9

ds Class

As a gd is a “group of data” of determined (known and not too big) length, a ds

(Data Stream) is used to handle sampled data (in time domain) with unknown (or

very big) length, of which one has at a given moment just a chunk.

The data members are:

len length of the chunks

dt sampling time

capt caption

type type (1: not interlaced, y2 contains last but one; 2: interlaced by

the half, alternate y1 and y2; 0 not interlaced, y2 not used)

treq time requested (to start)

y1 odd chunk (last chunk if not interlaced) OCCUPIES len*5/4

y2 even chunk (last chunk but one if not interlaced)

tini1 time of the first sample of y1

tini2 time of the first sample of y2

ind1 index for y1 (particular uses)

ind2 index for y2 (particular uses)

nc1 serial number of y1 chunks

nc2 serial number of y2 chunks

lcw last chunk written (“produced”)

lcr last chunk read (“served” – for multiple clients use)

cont control variable - normally absent (0); may be an array or cell

array, for particular uses)

 10

ds Operation

The basic idea is the client-server metaphor: the client asks for chunks of data,

defining at the beginning the modalities and then calling iteratively the server.

 There are three fundamental operations:

 Initial Setting

At this stage, a ds is created and the modalities of the data service are defined.

This is done mainly by the methods ds (the constructor) and edit_ds (a

modifier). At this stage the fundamental constants of the ds are set:

 len

 dt

 capt

 type

 treq

Then some variables are initialized:

 nc1 = 0

 nc2 = 0

 lcw = 0

 lcr = 0

 ind1 = 1

 ind2 = 2

 cont = 0

 tini1 = -d.len*d.dt (sometimes necessary)

A particular method is reset_ds, that resets the variables to the initial values.

 ds Servicing

This is done by particular methods that carry out the ds server operation.

Examples are:

 data simulation servers, as

 signal_ds, that creates continuous signals (sinusoid,ramp,…)

 noise_ds, that simulates a noise of given power spectrum

 11

 data access servers, as

 r872ds, that accesses data in r87 format

 fr2ds, that accesses data in frame format

 snf2ds, that accesses data in snf format

 other, as

 gd2ds, that creates a ds from a “long” gd

A ds server has the duty of setting the ds variables (except lcr and cont) .

The interlaced operations has the following scheme:

 Interlaced operation:

 chunk 1 y1 0 1 1 1 | 1

 chunk 2 y2 1 1 1 2 |

 chunk 3 y1 1 2 2 2 | 2 No new data

 chunk 4 y2 2 2 2 3 |

 chunk 5 y1 2 3 3 3 | 3 No new data

 chunk 6 y2 3 3 3 4 |

Attention: for this reason the real dimension of y1 is 5*len/4.

Moreover, in the case of interlaced operations, the data are shifted of len/4:
the first len/4 data are set to 0; this because to not overlook the beginning data.

 Client Processing

This is done by functions that operates on the chunks served by a ds server.

Examples are

 pows_ds, ipows_ds, ipows_ds_ng, that compute running power

spestra, with different characteristics

 running_ds, that does running plot of the data

 stat_ds, that performs running statistics.

 write_snf_ds, to store the data on a file (see the SNF section).

Tipically a client ds processor works independently of the type of the ds server.

Besides these three basic operations, there is another important operation:

 ds transformation

 12

This is performed by a ds transformer, that has both the characteristics of a ds

server and of a client processor. Examples are

 to_interlace_ds, that transforms a type 1 ds to a type 2 ds

 de_interlace_ds, that transforms a type 2 ds to a type 1 ds

 ffilt_go_ds, that creates a frequency domain filtered ds, from another

ds.

A ds transformer has the same “duties” of a ds server, for the generated ds.

 13

am structure

The am structure describes an ARMA filter of the type

 y(n) = b0 * x(n) + b(1) * x(n-1) + ... + b(nb) * x(n-nb)

 + a(1) * y(n-1) - ... - a(na) * y(n-na)

The elements of the structure are :

am.a AR coefficients

am.na number of AR coefficients

am.b MA coefficients

am.nb number of MA coefficients

am.b0 MA 0-th coefficient

am.bilat = 1 bilateral filter

am.capt caption

am.cont control variable

Basic functions are:

o crea_am that creates different types of am filters (low-pass, high-
pass, resonances,…)

o am_multi that multiplies two filters
o am_divi that divides two filters
o am_filter that applies an am filter to a data vector
o am_trfun that computes the transfer function of a filter
o am_pulres that computes the pulse response of a filter

 14

mp structure

The mp structure is introduced to contain multi-channel sampled data.

The elements of the structure are:

mp.nch number of channels

mp.ch(i).name channel name

mp.ch(i).n dimension of x,y

mp.ch(i).x ... ; if dim x is 1, x(1) is the beginning and mp.ch(i).dx

mp.ch(i).dx …

mp.ch(i).y …

mp.ch(i).unitx …

mp.ch(i).unity …

mp.ch(i).ch ch number (primary key for chstr - optional)

mp.x abscissa (equal for all channels) if ch(i).x is absent; if dim x is
1, x(1) is the beginning and mp.dx is the sampling period

mp.dx …

mp.n …

mp.unitx …

 15

ev / ew structure

The ev structure is used for describing events or sets of events (ew).
The ew array structure is more compact and simpler to use, but doesn't contain
the event shape.
The two functions ev2ew and ew2ev convert ev in ew and vice versa (ev2ew
obviously loses the shape).
A set of events is associated with a channel structure that describes all the
available channels (for one or more antennas), so each event is associated to a
channel of the set.

The channel structure

All cases

ch.na number of antennas

ch.nch() number of channels for each antenna

ch.an(nchtot) antenna

ch.st(nchtot) sampling time

ch.ty(nchtot) type

ch.cf(nchtot) central frequencies

ch.bw(nchtot) bandwidth

ch.win(:,nchtot) windows (the win vector contains alternate, for any
channel, ini,fin of each window); may be absent.

Simulation

ch. lcn(nchtot) lambdas for channel noise (norm to tobs)

ch. lds(nchtot) local disturbance sensitivity

ch.lml() lambdas for loc. dist. (for any antenna - norm to tobs)

ch. gws(nchtot) gravitational wave sensitivity

ch.lmg lambda for gw (norm to tobs)

Statistics

ch. nev(nchtot) number of events found

Analysis

ch. dt dead time for cluster analisys (s)

The ev structure

ev(i).t (starting) time (days, normally mjd)

ev(i).tm time of the maximum

ev(i).ch channel

ev(i).a amplitude

ev(i).cr critical ratio

ev(i).a2 secondary amplitude (e.g. bandwidth)

 16

ev(i).l length (s)

ev(i).fl flag

ev(i).ci cluster index (0 default)

ev(i).shy() shape

ev(i).sht shape initial time

ev(i).shdt shape sampling time

The ew structure

ew.nev number of event

ew.t() (starting) time (days, normally mjd)

ew.tm() time of the maximum

ew.ch() channel

ew.a() amplitude

ew.cr() critical ratio

ew.a2() secondary amplitude (e.g. bandwidth)

ew.l() length (s)

ew.fl() flag

ew.ci() cluster index (0 default)

 17

PSC – Periodic Source Candidate

The periodic source candidates are structures containing the following elements:

psc.n number of candidates

psc.tim starting time (mjd)

psc.dt number of spin-down parameters

psc.lfft length of the fft

psc. nsd number of spin-down parameters

psc.fr(i) start frequency

psc.lam(i) ecliptical longitude (lambda)

psc.bet(i) ecliptical latitude (beta)

psc.sd1(i) first spin-down parameter

psc.sd2(i) second spin-down parameter (possibly absent)

psc.sd3(i) third spin-down parameter (possibly absent)

 …

psc.cr(i) statistical significance

psc.h(i) h amplitude

It is intended that a psc structure has the same tim, dt, lfft and nsd for all the
candidates that contains.

 18

PSC Data Base

Periodic Source Candidates are stored in particular huge data bases, named
PSC_DB. In this case only one spin-down parameter is considered.

A PSC_DB is a collection of files and folders, contained in a folder with name
PSC_DBxxxxxx .

This folder contains

 a readme.txt file,

 a data-base creation log file psc.log,

 a doc file psc.doc with the documentation,

 a psc.dat file that is a script with peculiarities of that DB, like the starting
time, the sampling time, the length of the ffts, the number of spin-down
parameters, the antenna coordinates,…

 20 folders named 0000, 0100, 0200,…., 1900

each of these folders contain 10 folders named 00, 10, 20,…., 90 and each of
these last contain 10 files, one for each hertz of starting frequency. The name of
the files refer to the name of the PSC_DB and to the covered frequency range,
for example, xxxxxx1394 or xxxxxx0101.

Each file has the following structure:

Header

initial time (mjd) double 1-8

sampling time double 9-16

log2 FFT length int2 17-18

initial frequency basic group
 (multiples of 32768)

int2 19-20

delta lambda float 21-24

delta beta float 25-28

delta sd1 float 29-32

delta CR float 33-36

ini h float 37-40

delta h float 41-44

Any candidate

frequency bin (from initial basic group) int2 1-2

lambda index int2 3-4

beta index int2 5-6

sd1 index int2 7-8

CR index int2 9-10

h index int2 11-12

 19

If the data-base contain 10^9 candidates, each file should contain about 500000
candidates. So the mean value for the dimension of the file is

500000*12+44 ~ 6 MB

and the total dimension of the data base should be about 12 GB.

 20

FDF – Frequency Domain Filters

Here is the description, from the programming point of view, of the Snag Multi-
Filter methods.
A multi-filter is a set of filters that operate mainly in the frequency domain and
have a common part (normally adaptive). It is described by an ff_struct
structure

0 .n number of filters (multiplicity)

1 .lfft length of the principal fft (must be set equal to the input

ds chunk length

0 .pfilt principal filter type (‘nothing’, ‘whitening’, wiener’,…)

210 .pfy double array containing the principal filter (may be

adaptively variable)

0 .tau adaptivity time (in number of periodograms)

1 .stau adaptivity time (in seconds)

1 .w AR coefficient

2 .wnorm normalization variable

0 .capt general caption

0 .sfilt(k) sub-filters structures

0 .sfilt.rlfft sub-filter ratio lfft primary/secondary

0 .sfilt.fshift sub-band shift (in frequency)

1 .sfilt.nshift sub-band shift (in frequency bins)

0 .sfilt.mode sub-filter type (‘nothing’, ‘gauss’, ‘lorentz’,…)

0 .sfilt.par(k) sub-filter parameters

0 .sfilt.capt sub-filter caption

10 .sfilt.sfy array containing the sub-filter

The first column codes are:

0 set by the user

1 set by ffilt_open_ds

2 set by ffilt_go_ds

A ff_struct (the 0 members, set by the user), can be “stored” in an m-file (typically in

the snag/analysis/filters folder) and “retrieved” by the run_m_file snag function

(interactively called by irun_m_file).

 21

FDF Operation

A Snag multi-filter operates by means of two functions:

 ffilt_open_ds, that performs the initializations

 ffilt_go_ds, that applies the filters.

 22

SFC – Simple File Format Collection

The SFC substitutes the SNF format for storing any Snag object, or, in general,
many types of simple or complex data sets.

The basic feature of the file formats here collected is the ease of access to the
data.

 The "ease of access" means:

 the software to access the data consists in a few lines of basic code
 the data can be accessed easily by any environment and language
 the byte level structure is immediately intelligible
 no unneeded information is present
 the number of pointers and structures is minimized
 the structure fits the needs
 the access is fast and, possibly, direct
 the need for generality is tempered by the need for easiness.

 The collection is composed by:

 sds, simple data stream format, for finite or "infinite" number of
equispaced samples, in one or more channels, all with the same
sampling time

 dds, similar to sds but in double precision
 sbl, simple block data format, in a more general case; a block can

contain one or more data types: any block have the same structure (i.e.
the sequence and the format of the channels is the same) and the same
length (i.e. the number of data in a block for a certain channel, is always
the same).

 vbl, varying length block data format, where the structure of all the blocks
is the same, but the length can be different.

 gbl, general block data format: it is not a format, but practically a
sequence of superblocks, each following one of the preceding formats; it
is a repository of data, not necessary well structured for an effective
analysis, but good for storage, exchange, etc..

 sev, simple event data format, used to store events, all with the same
byte length.

A set of files can be:

 internally collected, i.e. ordered serially or in parallel using the internal file

pointers (for example subsequent data files, or to put together different
sampling time channels)

 externally collected, i.e. logically linked by a collection script file, as it
happens for internal collecting

 embedded in a single file, with a toc at the beginning or at the end. This is
the case of the gbl files.

 23

A file can be wrapped by adding one or more external headers (for example
describing the computer which wrote the file).

 24

Basic SFC file format

 (SDS and SBL are some of the file formats of the SFC collection)

The format of the General SFC Header is the following :

label 8 bytes string (1-8) type label (e.g. #SFC#SDS)

prot 4 bytes int32 (9-12) protocol (integer; now 1)

coding 4 bytes int32 (13-16) machine and data coding (normally 0)

nch 4 bytes int32 (17-20) number of channels (N; integer)

point0
ex inidat

4 bytes int32 (21-24) pointer to the beginning of data (>=
944+N*128)

len 8 bytes int64 (25-32) number of blocks (sbl) or data per channel
(sds)
 (0 if it is not known)

t0 8 bytes double (33-40) beginning time (double); may be not
meaningful or have user meaning

dt 8 bytes double (41-48) sampling time (double); may be not
meaningful or have user meaning

capt 128 bytes string caption

filme 128 bytes string original name of the file

filmaster 128 bytes string master file or #NOFILE or original directory

filspre 128 bytes string serial preceding file or #NOFILE

filspost 128 bytes string serial subsequent file or #NOFILE

filppre 128 bytes string parallel preceding file or #NOFILE or filspre
directory (without / or \)

filppost 128 bytes string parallel subsequent file or #NOFILE or
filspost directory (without / or \)

Here ends the general part, then starts the peculiar part (for sds, sbl, vbl, gbl):

ch() N*128 bytes

depends on the sfc type
the channels can be sampled data, single
parameters, sets of parameters, matrices, strings,
etc.

user free
user file header
The user header length is (inidat - 944+N*128) bytes

data …
the data (depends on the sfc type)
the data are in N parallel streams (sds) or divided in
blocks (sbl)

 25

To access the user header, fseek(fid,944+N*128,'bof')

 26

sfc_ structure

sfc_.file file name (with path)

sfc_.pnam file path

sfc_.fid fid

sfc_.label label (e.g. #SFC#SDS)

sfc_.prot protocol

sfc_.coding machine and data coding

sfc_.t0 beginning time

sfc_.dt sampling time

sfc_.capt caption

sfc_.nch number of channels

sfc_.ch(nch) channel structures (depends on type)

sfc_.hlen non-user header length (bytes)

sfc_.len length of a stream (the total number of data is len*nch) or
number of blocks

sfc_.userlen length of the user header (bytes)

sfc_.point0 pointer to beginning of data

sfc_.eof end of file (1; for chained files, 2 -> end of chain, 3 -> error,
 -1 -> end chosen period)

sfc_.acc access number; 0 at beginning, incremented by user if
 not accessed in standard ways

sfc_.filme original name of the file

sfc_.filmaster master file

sfc_.filspre serial preceding file

sfc_.filspost serial subsequent file

sfc_.filppre parallel preceding file

sfc_.filppost parallel subsequent file

 27

SDS file format

SDS is one of the file formats of the SFC collection

The SDS (Simple DS) format is intended for storing one or more data streams, with
the same time beginning and the same sampling time.

The label field must contain #SFC#SDS. The first 944 bytes are the general SFC
header.

The peculiar part is:

ch() N*128 bytes
The channels can be sampled data, single
parameters, sets of parameters, matrices, strings,
etc.

user free
user file header
The user header length is (inidat - 944+N*128)
bytes

data
N*4*len bytes

float
the data are in N parallel streams (len for each
channel; float)

The sds_ structure derives from the sfc_ structure. The added or modified
members are:

sds_.ch(nch) channel captions

sds_.len length of a stream (the total number of data is len*nch)

sds_.point pointer for next data

A particular type of sds file is the t-type in which the first channel is a time
abscissa (normally in days).It is recognized by the channel caption that
begins with "timing channel". Typically the time abscissa is relative to the
integer part of sds_.t0 (to reduce the effect of the low precision of float32
data.

SDS file operation

The main function available for SDS files and data management are:

 Service functions

 sds_show

 28

 check_sds

 check_sds_conc

 sds_concatenate

 sds_reshape

 sds_selch

 sds_getchinfo

 sds_check_time

 sds_resume

 Read/Write functions

 sds_openw

 sds_open

 i_open_sds

 basic_sds, a template for sds_openw

 vec_from_sds, fills vec with data from sds files

[vec,sds_,tim0,holes]=vec_from_sds(sds_,chn,len,alpers)

 Rules:

 - If the file ends, opens the following one
 - In case of holes, fills with zeros
 - Vectors doesn't starts in holes, but with the beginning of next file
 - If "alpers" (Allowed Periods) is operative (present), non-allowed
 periods are zeroed. All-zeroes vectors are jumped

 sds_ sds structure
 chn number of the channel
 len length
 alpers (n,2) array containing the start and stop time of the n
 allowed periods
 It is omitted or 0 if there are no selection periods.

 vec the data
 tim0 first sample time (in mjd)
 holes structure describing holes
 .nztot total number of inserted zeros

 29

 .nzeros number of inserted zeros (for each hole - possibly an array)
 .kzeros vec index that starts the zeros (possibly an array)

 ss_vec_from_sds, similar to vec_from_sds, but sub-samples the data

 GD, DS and MP functions

 sds2gd

 sds2gd_selind

 sds2gd_selt

 sdst2gd creates a type-2 gd from a t-type sds

 sds2gd2 creates a gd2 with (row,col) = (nch,len/nch)

 sds2mp

 sds_writegd

 sds_writegd2

 read_sfc_ds

 Application functions

 sds_simVirgo

 sds_3chan

 sds_ns

 sds_spmean

 30

DDS file format

DDS is one of the file formats of the SFC collection

The DDS (Double Precision DS) format is analogous to the SDS format, but the
data are stored in double precision.

The label field must contain #SFC#DDS. For all the rest the format is similar to the
SDS.

 31

SBL file format

SBL is one of the file formats of the SFC collection

The SBL (Simple block data format) format is intended for storing one or more
data sets by means of "blocks" composed of sub-blocks, in a variety of different
cases.

The label field must contain #SFC#SBL. The first 944 bytes are the general SFC
header.

The peculiar part is:

ch() N*128 bytes (total)

ch().dx double (1-8) sampling first dimension (if any, otherwise 0)

ch().dy double (9-16) sampling second dimension (if any, otherwise 0)

ch().lenx int32 (17-20) length first dimension (number of rows)

ch().leny int32 (21-24) length second dimension (for single dim arrays, 1)

ch().inix double (25-32) beginning of first dimension

ch().iniy double (33-40) beginning of second dimension

ch().type int32 (41-44) type of data:
 1 byte (typically unsigned)
 2 int16
 3 int32
 4 float
 5 float complex
 6 double
 7 double complex
 .. compressed formats

ch().name 84 bytes string
(45-128)

channel name (the first run of non-blank chars)
and caption

user free user file header

data
blocks

…
…

The sbl_ structure derives from the sfc_ structure. The added or modified
members are:

sbl_.ch(nch) channel captions

 .dx

 .dy

 .lenx number of rows

 .leny number of columns

 .type data type of the channel

 .name channel name

 32

 .capt caption

 .len length of the sub-block (in bytes)

 .inix initial value of the first abscissa

 .iniy initial value of the second abscissa

 …. other (depending by the data types)

 .bias position of the first data of the block (in bytes)

 .k number of read data (pointer to the next data)

sbl_.len number of blocks

sbl_.blen block length (in bytes)

sbl_.point pointer for next data

sbl_.bltime block time

sbl_.eob end of block

 33

Structure of the sbl blocks

There are ordinary and extra-ordinary blocks. All blocks have the same length.
All ordinary blocks have the same structure. Extra-ordinary blocks are user
managed.
Each block is composed by “channels” (or sub-blocks), containing a short
header and data, in the following way:

block
number

a 16 byte string as “[BLNxxxxxxxxxxx]” for
ordinary blocks or “[BLExxxxxxxxxxx]” for extra-
ordinary blocks

Block
header

block time double; may be not meaningful or have user
meaning

ch(1).inix double; always present; may be not meaningful
or have user meaning

sub-block 1

ch(1).iniy double; always present; may be not meaningful
or have user meaning

ch(1).par1 special data type specific; absent for standard
data

ch(1).par2 special data type specific; absent for standard
data

… …

A(lenx,leny) data of channel 1

ch(2).inix double; always present; may be not meaningful
or have user meaning

sub-block 2

ch(2).iniy double; always present; may be not meaningful
or have user meaning

ch(2).par1 special data type specific; absent for standard
data

ch(2).par2 special data type specific; absent for standard
data

… …

A(lenx,leny) data of channel 2

… other sub-
blocks

The standard data types are:

Type i.e. Number of bytes

1 char 1

2 int16 2

3 int32 4

4 float 4

 34

5 float complex 8

6 double 8

7 double complex 16

The length of a block (in bytes) can be computed (for standard data), as

1

24 16
chN

i i

i

L n

where the sum is on all the channels, L is the number of data for each channel
and n the number of bytes for one datum of each

 35

VBL file format

VBL is one of the file formats of the SFC collection

The vbl (Variable block data format) format is intended for storing one or more
data sets by means of “blocks” composed of sub-blocks, in a variety of different
cases.
The base structure is similar to the SBL format, the unique difference is that
every sub-block array is preceded by a label as [CHxxxx] and two int32 with the
two dimensions of the array (plus the inix and iniy as in SBL). At the end an
“index” with the pointers to the blocks may be present.

The label field must contain #SFC#VBL. The first 944 bytes are the general SFC
header.

The peculiar part is the same of SBL format (also if some ch parameters may
be not meaningful (or have user meaning), because are substitutes by the sub-
block values)

ch() N*128 bytes

ch().dx double (1-8) sampling first dimension (if any, otherwise 0)

ch().dy double (9-16) sampling second dimension (if any, otherwise 0)

ch().lenx int32 (17-20) length first dimension (number of rows)

ch().leny int32 (21-24) length second dimension (for single dim arrays, 1)

ch().inix double (25-32) length first dimension (number of rows)

ch().iniy double (33-40) length second dimension (for single dim arrays, 1)

ch().type int32 (41-44) type of data:
 1 byte (typically unsigned)
 2 int16
 3 int32
 4 float
 5 float complex
 6 double
 7 double complex
 .. compressed formats

ch().name 84 bytes string
(45-128)

channel name (the first run of non-blank chars) and
caption

user free user file header

data
blocks

…
…

The vbl_ structure derives from the sfc_ structure. They are equal to the case of
SBL, but some parameters change at every block and there is the pointer
“nextblock”:

vbl_.ch(nch) channel captions

 36

 .dx

 .dy

 .lenx number of rows

 .leny number of columns

 .type data type of the channel

 .name channel name

 .capt caption

 .len length of the sub-block (in bytes)

 .inix initial value of the first abscissa

 .iniy initial value of the second abscissa

 …. other (depending by the data types)

 .bias position of the first data of the block (in bytes)

 .k number of read data (pointer to the next data)

vbl_.len number of blocks

vbl_.point(nch) pointer for next data

vbl_.block block number

vbl_.nextblock pointer to next block

vbl_.bltime block time

vbl_.eob end of block

vbl_.ch0

 .chnum parameters of present channel

 .dx “

 .dy “

 .lenx “

 .leny “

 .type “

 .inix “

 .iniy “

 .next “

 37

Structure of the vbl blocks

There are ordinary and extra-ordinary blocks. All ordinary blocks have the same
structure. Extra-ordinary blocks are user managed.
Each ordinary block is composed by "channels" (or sub-blocks), containing a
short header and data, in the following way:

block
number

a 16 byte string as "[BLNxxxxxxxxxxx]" for
ordinary blocks or "[BLExxxxxxxxxxx]" for extra-
ordinary blocks

Block
header

block time double; may be not meaningful or have user
meaning

pointer to
next block

int64 (may be 0)

ch number a 8 byte string as "[CHxxxx]"

sub-block 1

pointer int64 pointer to next channel (0 → next block)

ch(k1).dx double; always present; may be not meaningful
or have user meaning

ch(k1).dy double; always present; may be not meaningful
or have user meaning

ch(k1).lenx int32

ch(k1).leny int32

ch(k1).inix double; always present; may be not meaningful
or have user meaning

ch(k1).iniy double; always present; may be not meaningful
or have user meaning

ch(k1).type int32

ch(k1).par1 special data type specific; absent for standard
data (user managed)

ch(k1).par2 special data type specific; absent for standard
data (user managed)

… …

A(lenx,leny) data of channel 1

ch number a 8 byte string as "[CHxxxx]"

sub-block 2

pointer pointer to next channel (0 → next block)

ch(k2).dx double; always present; may be not meaningful
or have user meaning

ch(k2).dy double; always present; may be not meaningful
or have user meaning

… …

… …

A(lenx,leny) data of channel 2

… other sub-
blocks

 38

Typical length of a channel (if no special data are present) is

 ch_header (60 bytes) + data length

Typical length of a block (if no special data are present) is

 block_header(32 bytes)+channels

At the end, after all blocks, may be present a block index, with the following
structure:

pointer to bl 1 8 byte integer

pointer to bl 2 8 byte integer

 …

total number of
blocks

8 byte integer

[-INDEX] 8 byte integer

The length of the index is (Nbl+2)*8 bytes.

 39

SEV file format

SEV is one of the file formats of the SFC collection

The sev (Simple event data format) format is intended for storing a number of
events, each of them has a predetermined number of parameters (and so a
predetermined byte occupancy).
The data for each event are divided in 4 groups:

type number
(as channels)

length notes

double precision nd nd*8 the first typically is the time as mjd

integer ni ni*4

float nf nf*4

array na (1 or 0) lar*4 all float (may contain the event shape)

So there are NC=nd+ni+nf+na parameters (or channels in the language of SFC)
and NC appears as the nch of the basic header.

In the basic header we have len as the total number of events. Typically the t
and dt are the beginning and the duration of the observation time (but it is not
mandatory).

After the basic header there are the standard “channels” (or parameter)
descriptions (128 bytes each), then possibly the user data (also a simple text
description, whose length is put in the sev_.userlen), and then, at sev_.point0, a
short supplementary header with the 4 32-bits integers with the values of nd, ni,
nf and lar.

The events start at (sev_.point0+16).

The length of each event in bytes is

 sev_.evlen = nd*8+(ni+nf+lar)*4

 40

Compressed data formats

The goal of these formats is to achieve high compression with little loss (if any) of
information.

LogX format

This is a format that can describe a real number (float) with little more than 16, 8, 4, 2 or
1 bits. X indicates this number of bits.
It uses normally a logarithmic coding, but can use also linear coding and, in particular
cases, the normal floating 32-bit format. In the case that all the data to be coded are
equal, only one data is archived (plus the stat variable).
It best applies to sets of homogeneous numbers.
Let us divide the data in sets that are enough homogeneous, as a continuous stretch of
sampled data. The conversion procedure computes the minimum and the maximum of
the set and the minimum and the maximum of the absolute values of the set, checks if
the numbers are all positive or negative, or if are all equal, then computes the better
way to describe them as a power of a certain base multiplied by a constant (plus a
sign). So, any non-zero number of the set is represented by

xi = Si * m * bE
i

or, if all the number of the set have the same sign,

xi = S * m * bE
i

where

 Si is the sign (one bit)

 m is the minimum absolute value of the numbers in the set

 b is the base, computed from the minimum and the maximum absolute value of

the numbers of the set

 Ei is the (positive) exponent (15 or 16 bits for Log16, 7 or 8 bits for Log8, and so

on).

The coded datum 0 always codes the uncoded value 0 (also if such a value doesn’t
exist).

m, b, and a control variable that says if all the number are positive, negative or mixed
are stored in a header. The data bits contain S and E or only E.
The minimum and maximum values can be imposed externally, as saturation values.

In case of mixed sign data, in order to have automatic computation of m and b, an
epsval (a minimum non-zero absolute value) should be defined. If this is put to 0, this
value is substituted with the minimum non-zero absolute datum.

The zero, in the case of mixed sign data, is coded as “111…11”, while “000…00” is the
code for the number m (“1000…00” is –m, “0111…11” is the maximum value and
“111…110” the minimum).

 41

The mean percentage error in the case of a gaussian white sequence is, in the case of
Log16, better then 10-4 .

Also a linear coding is possible:

xi = m + b * Ei

Also in this case, the coded datum 0 always codes the uncoded value 0 (also if such a
value doesn’t exist).
In case of linear coding, if the data are “mixed sign” (really or imposed) and X is 8 or 16,
E is a signed integer, otherwise it is an unsigned integer: normally, in the first case, m is
0.

In case of data dimension X less than 8 (4, 2 or 1: the sub-byte coding), the logarithmic
format is substituted by a look-up table format. In such case, a look-up table of (2X – 1)

fixed thresholds tk (0<k<2X – 2), in ascending order, must be supplied. Data < t0 are
coded as 0, data between tk-1 and tk are coded as k and data greater than the last
threshold are coded as 11..1 . In the case of linear sub-byte coding, the coded data are
unsigned.

Here is a summary of the LogX format:

Number
of bits

32 16 8 4 2 1 0

Coding float 2 linear
2 logarithmic

2 linear
2 logarithmic

linear
look-up

linear
look-up

linear
look-up

constant

Logarithmic coding can be done using X or X-1 bits for the exponent, depending if the
last bit is used for the sign. Linear coding can be (for X = 8 or 16) signed or unsigned
integer coded.
Linear and logarithmic coding can be adaptive.
So, totally, we have 16 different LogX formats (7 linear, 4 logarithmic, 3 look-up table, 1
float and 1 constant float), 11 of which can be adaptive.

When archived, LogX data are stored in this way:

Data Type Position
stat , a variable that describes the coding short 1-16

N , the number of the coded data
the number of bytes to be read is computed from
this and stat

long 17-48

m and b (if the coding is linear or logarithmic) 2 doubles 49-112

- the coded data
- or just the original float data in case of X=32
- or the constant float if X=0

… …

.
The look-up table, if needed, must be defined elsewhere (e.g. in a file header).

The stat variable has the following bit fields:

 stat[0] = 0 all negative, = 1 all positive
 stat[1] = 0 all with the same sign, = 1 mixed

 42

(overcomes stat[0])
 stat[2] = 1 all equal data
 (overcomes stat[6])
 stat[3-5] = expX : X = 2^expX (max 32 == not coded)
 stat[6] = 0 logarithmic, = 1 linear

Sparse vector formats

Sparse vector is a vector where most of the elements are 0. We call “density” the
percentage of non-zero elements. Sparse matrixes are formed by sparse vectors.
Sometimes (binary matrices) the non-zero elements are all ones and sometimes they
are also aggregated. In this last case the binary derivative (0 if no variation, 1 if a
variation is present) is often a sparse vector with lower density value.
We represent sparse vectors with the “run-of-0 coding”. It consists in giving just the
number of subsequent zeros, followed by the value of the non-zero element. In the
case of binary vectors, the value of the non-zero element is not reported.

Examples:

{1.2 0 0 0 0 0 3.2 0 0 0 0 0 0 2.3 0 0 0 0 0 0 0 0 3.0 0 0 0 2.}

coded as {0 1.2 5 3.2 6 2.3 8 3.0 3 2.}

binary case:
{0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0}

coded as {3 6 8 0 3}

aggregate binary case:

{1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1}

binary derived as

{1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0}

coded as

{0 2 7 3 5 4 9 2}.

In practice the number of subsequent zeroes is expressed by an unsigned integer
variable with b = 4, 8, 16 or 32 bits; one is added to the coded values, in such a way
that the value 0 is an escape character used if more than 2n-2 zeroes should be
represented; in such case [obsolete: a “0” means 2n-1 zeroes without a non-zero. For
example, with n=8, {0 0 7} means a run of 255+255+6 = 516 zeroes] the datum is put
in a side array of uint32.

The practical coding of a sparse vector produces one or two vectors (zero runs and, in
the non-binary case, the non-zero element arrays) preceded by a long defining the

 43

length of the vector/s and an uint variable stat the bits of which give the information on
the actual format (index starts from 0, the first 8 are reserved for LogX):
 stat(8) = 0 non-binary, = 1 binary
 stat(9) = 0 non-sparse, = 1 sparse
 stat(10) = 0 normal, = 1 derived
 stat(11-12) = dimen : b = 4*2^dimen
 stat(14) = 1 logx format for non-zero elements

In practice, there are 5 different cases:

sparse, non-binary the 0-runs and the non-zero elements

sparse, binary only the 0-runs of the sequence

sparse, derived binary only the 0-runs of the derived sequence

non-sparse, non-binary normal vector (a float per element)

non-sparse, binary one bit per element

When archived, SpVec data are stored in this way:

 the short stat

if a sparse non-binary format is used

 a long with the number of the original array elements

 a long with the number of the sparse elements

 the char array with the 0-run array; the number of char to be read is computed
from stat and the number of the sparse elements

 a LogX array (see the preceding subsection) with the non-zero values or a long
with the number of non-zero elements and a float array with the non-zero
elements

if a sparse binary format is used (derived or not)

 a long with the number of the original array elements

 a long with the number of the sparse elements

 the char array with the 0-run array; the number of char to be read is computed
from stat and the number of the sparse elements

 a float with the value of the non-zero element
if a non-sparse non-binary is used

 a LogX array (see the preceding subsection) with all the values or a long with
the number of the elements and a float array with the vector

if a non-sparse binary is used

 a long with the number of original array elements

 the char array with the bit array

 44

Use of SFC formats for standard Snag
objects

The standard Snag data objects are:

 GD

 DM or GD2

 DS

 MP

 EV

 PSC

Each of these has a peculiar use of the SFC.

There are some function to do this:

 sds_writegd(folder,file,gd) that writes a gd in an sds file.

 sds2gd(file,k), that puts in a gd the content of an sds file

 sds2gd_selind(file,k,minind,maxind), that puts in a gd the content of a
selection (based on the channel number and the index of the samples) of
an sds file

 sds2gd_selt(file,chn,t), that puts in a gd the content of a selection
(based on the channel number and the abscissa of the samples) of an
sds file

 sds2mp(file,t), creates an mp with the data contained in an sds file

 [d,sds_]=sds2ds(d,sds_,chn), generates a data-stream from an sds file;
this is a ds server

 45

Use of SFC formats for PSS

The PSS (Periodic Source Search) project uses many different types of data to
be stored. Namely:

 h-reconstructed sampled data, raw and purged

 Short FFT data bases

 Peak maps

 Hough maps

 PS candidates

 Events

Each of these has a peculiar type of SFC.

 h-reconstructed sampled data, raw and purged

This type of data are normally stored with simple SDS.

 Short FFT data bases

The data are stored in a SBL file.

In the user field there are other information like:

 [I] FFT length (number of samples of the time series)

 [I] Interlacing size (number of interlaced samples)

 [D] sampling time of the time series
[S] window (used on the time series)

The blocks contain:

o one half of the FFT of purged sampled data
o one short power spectrum
o one one-minute mean vector
o a set of parameters as:

 [I] number of added zeros (for errors, holes or over-resolution)

 [D] time stamp of the first time datum (mjd)

 [D] time stamp of the first time datum (gps time)

 [D] fraction of the FFT time that was padded with zeros

 [D] velocity of the detector at time of the first datum (vix,viy,viz:
coordinates in Ecliptic reference frame, fraction of c)

 [D] velocity of the detector at time of the middle datum
(vmx,vmy,vmz: coordinates in Ecliptic reference frame, fraction of c)

 [D] velocity of the detector at time of the last datum (vfx,vfy,vfz:
coordinates in Ecliptic reference frame, fraction of c)

 [D] mean velocity of the detector during the FFT time (vx,vy,vz:
coordinates in Ecliptic reference frame, fraction of c)

 [D] initial sidereal time

 46

 Peak maps

The data are stored in a SBL file or in an VBL file, depending if a standard or
compressed format is chosen. The structure is similar to that of the SFDB, but a
peak vector takes the place of the FFT. If the standard format is chosen, the real
vector contains many zeros and the values of the peaks above a statistical
threshold. If the compressed format is chosen, the peak vectors are stored as
sparse binary vector or sparse vectors (with also the amplitude information), so
the real length of each block is not constant (and the VBL file format is chosen).

 Hough maps

The data are stored in SBL or VBL files. The parameter to be stored in
each block (containing a single Hough map) are:

 the length of the record

 the parameters of the hough map (amin, da, na, dmin, da, nd)

 the spin down parameters (nspin, spin1,spin2,…)

 the number of used periodograms and the type (interlaced,
windowed,…)

 the initial times and length of each periodogram

 the type and the parameters of the threshold

 PS candidates and Events

 These data could be stored in an SDS file, with many channels,
but, for the necessity of easy random access needed for such data
bases, a peculiar format will be used.

 47

Data_Browser

The data browser is a GUI application to easy access or simulate data.

Almost all the operations are based on the use of a structure, the D_B structure.

string D_B.access “by file” or “by time”

double .data.type 1: snf, 2: frames, 3: R87, 4: A.V. format, 100: simulation

string .data.file selected data file; in the simulation case, the file containing the

spectrum

double .data.initim initial time (MJD)

double .data.duration duration (D)

string .data.chname channel name

double .data.chnumber channel number

 .data.dt sampling time

 .data.dlen data chunks length

 .data.sp spectrum vector

 .data.frame4par a structure containing channel parameters for Frame

Format version 4

 .machtype machine type

 .uleaps leap seconds between GPS/TAI and UTC

 .nframe number of frames in ‘file’

 .loctime local seasonal time – UTC in seconds

 .t0 frame start time

 .dt sampling time

 .framedurat frame durations in sec

 .distch(nframe) positions of selected channel in bytes from beginning

of file

 .compress compression type

 .type data type

 .ndata Length of data vector (same as dlen)

 .filter an ff_struct containing information for the filter

 .proc.type rplot running plot

 48

 rpows running power spectrum

 tfpows time-frequency power spectrum

 rhist running histogram

 evenf event finder

 summary summary of the data

 extrgd extraction of data into a gd

 dtfpows differential time-frequency power

spectrum

 .proc.iter number of iterations

 49

D_B Operation

The sequence of operation is :

Where Call What

D_B [ntype,file,pnam]=db_fildatsel file selection

D_B [chn,chs,dt,dlen,...]=db_selch(ntype,file) channel selection

D_B [out_db,D_B]=go_db(D_B)
processing
distribution

go_db

[out_sp,D_B]=d_b_rpows(D_B)
or [out_sp,D_B]=d_b_rplot(D_B)
or [out_sp,D_B]=d_b_tfpows(D_B)
or [out_sp,D_B]=d_b_rhist(D_B)
or …

processing effective
procedure

d_b_xxx [d,r,fid,reclen,g,r_struct]=db_open(...)
opens the files and
initialize the ds and
r_struct

d_b_xxx [d,r,r_struct]=db_gods(...)
opens the files and
initialize the ds and
r_struct

db_gods
ds server e.g.
[d,r_struct]=sds2ds(d,r_struct,chn)

takes data

d_b_xxx [powsout,answ]=ipows_ds(...) data operation

 r_struct is an snf read structure, defined in read_snf_gd (obsolete),
 or (for sds files) an sds open structure, defined in sds_open.

 50

GW_Sim

GW_Sim is a Snag application to simulate signals and noises for gravitational

wave antennas.

The simulation parameters are stored in a GWS structure, that is the following

(work in progress):

 GWS

 .antenna antenna substructure

 .antenna.type ‘virgo’, ‘ligo’, ‘explorer’,…

 .antenna.par(k) antenna parameter substructure

 .antenna.par.name

 .antenna.par.val1

 .antenna.par.val2

 .antenna.par.p12

 .antenna.par.p21

 .antenna.par.tau

 .antenna.par.w

 .burstnoise burst noise structure

 .chirp chirp signal structure

 .pulse pulse signal structure

 .perw periodic wave structure

 .stoch stochastic wave structure

 .ds.len ds chunk length

 .ds.type ds type

