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Peculiarity of the periodic sources 

The periodic sources are the only type of  gravitational signal that 
can be detected by a single gravitational antenna with certainty (if  
there is enough sensitivity to include the source among the 
candidates, the false alarm probability can be reduced at any 
level of  practical interest). 

The estimation of  the source parameters (like e.g. the celestial 
coordinates) can be done with the highest precision. 

Once one detects a periodic source, it remains there to be 
confirmed and studied by others. It is not only a detection, 
it is a discover. 



Signal characterization 

 Shape: sinusoidal, possibly two harmonics. 
 Location: our galaxy, more probable near the center or in 

globular clusters; nearest (and more detectable) sources are 
isotropic; sometimes it is known, often not (blind search). 

 Frequency: down, limited by the antenna sensitivity; up to 1~2 
kHz; sometimes it is known , often not (blind search). 

 Amplitude:  
 

 
     I3 is the principal moment of inertia along the rotation axis, ε is the ellipticity (I2-I1)/I3 
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Signal characterization – other 
features 

 Doppler frequency modulation, due to the motion of the 
detector 

 Spin-down (or even spin-up), roughly slow exponential 
 Intrinsic frequency modulation, due to a companion, an 

accretion disk or a wobble 
 Amplitude modulation, due to the motion of the detector 

and its radiation pattern and possibly to intrinsic effect 
(e.g. a wobble) 

 Glitches 



Glitches  

In the first figure there is the period variation of  the Vela Pulsar during about 12 years. 
In the second figure there is a more schematic view (frequency on ordinates). 
The frequency of  glitches depends on the age of  the star (younger stars have more 
glitches) and is not a general feature. 
Glitches are related to star-quakes. 



Odd features of the data that complicate the 
detection (in particular of the noise) 

 Non-stationarity 

 Non-gaussianity 

 Non-flatness of the spectrum 

 Impulsive and burst noise 

 “Holes” in the data 



Basic detection techniques 

 Matched filter 
 Lock-in 
 Fourier transform and power spectrum 
 Autocorrelation 
 Non linear methods 



Matched Filter 
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The optimal detection of  a signal of  known shape, embedded in  
white gaussian noise is performed by the matched filter, that can 
be seen as 



Matched filter for a sinusoid 

If  the data is composed by the sum of a sinusoid and white 
 gaussian noise 
 
 
 
the matched filter is 
 
and the response to the sinusoidal signal is  
(the normalization is done to obtain h0) 
 
and the variance of the noise is 
  
The signal-to-noise ratio is  
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Detection statistics and lock-in 

  The matched filter is a linear filter, so the noise at the output is gaussian. 
 If the phase is unknown, the detection can be achieved by a lock-in amplifier 

(or an equivalent computer algorithm) 
 
 
 where ω0 is the tuning angular frequency. In such case the noise power is 

doubled and its distribution is no more gaussian. 
 If ω0 changes in time with a known law, the method works well if we 

substitute ω0t’ with the changing phase φ(t’). 
       Note that a typical laboratory lock-in has an exponential memory 
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Power spectrum by FFT periodogram 

 If the frequency (and the phase) of the signal is not known, the better way to 
detect a periodic signal is by the estimate of the power spectrum. This can 
be obtained by a periodogram, i.e. the square modulus of the Fourier 
transform of the data. 

       Remember that the power spectrum is, by definition, the Fourier transform of 
the autocorrelation Rxx(τ)=E[x(t)x(t+τ)]. 

 PS with FFT periodogram is like a set of lock-in at n frequencies. 
 
 An efficient algorithm to compute the (discrete) Fourier transform of the 

sampled data is the Fast Fourier Transform (FFT). The number of floating point 
operations (FLOP) needed to compute an FFT of length n (that should be a 
power of 2) is about 

5 * n * log2(n) 
 instead of something proportional to n2. 



Signal and noise 

The noise is white 
gaussian with standard 
deviation equal to 1 

 

The signal (in red) is a 
sinusoid of  amplitude 
0.1 and frequency of  20 
Hz 



Power Spectrum Estimation 

This is the power 
spectrum of  the previous 
signal+noise, estimated 
by the FFT periodogram 
(length 32768 = 215). 

 

The arrow indicates the 
signal peak at 20 Hz 

How this detection 
happens ? The point is 
that the noise power is 
spread in all the 
spectrum bins, while the 
signal goes only in one. 



Power spectrum by FFT 
periodogram (some details) 

Discrete Fourier transform 
 
Frequency resolution  
(if the signal power goes all in a 
single bin, the noise power in the 
bin is proportional to the bin width) 
 

Signal-to-noise ratio (linear) 
 
 
 
 
           less than the SNR of the matched filter 
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Power spectrum as the mean of 
periodograms 

 The distribution of the amplitude of the bins of the periodogram 
of a chunk of white gaussian noise is exponential. It remains 
exactly the same increasing the length of the periodogram, and the 
same is obviously for the mean and the variance. 

 To reduce the variance of the noise spectrum, one way is by 
dividing the chunk of data in N pieces, take the periodograms of 
each piece and then make the average. 

 In this case both the variance and the signal is reduced and the 
(linear) SNR is reduced by a factor       . 

 The distribution is a χ2 with 2N degrees of freedom. 

4 N



Windowing 

When the frequency of  a sinusoidal signal has not exactly the central value of  a frequency 
bin of  a periodogram, the energy of  the signal goes also in other bins. To reduce this 
effect, special weighting functions, called windows, have been studied. The use of  a 
window normally reduces the resolution. 

In the two figures we see the effect of  two different windows on the power spectrum 
estimate of  the same signal. 



Doppler effect 

The Doppler variation 
of  the frequency in a 
period of  one year for 
a low (ecliptical) 
latitude source. 

The original frequency 
is 100 Hz and the 
maximum variation 
fraction is of  the order 
of  0.0001  



Doppler effect - zoom 

Zoom of  the preceding 
figure. Note the daily 
variations. 

Very roughly the 
Doppler effect can be 
seen as the sum of  two 
“epicycles” (Ptolemaic 
view) 



Doppler effect  (zoom) 

Frequency variation on 
about 4 days. 

Note that the problem is 
not in the presence of  the 
Doppler shift, but in the 
time variation of  the 
Doppler shift. So the effect 
of  the rotation is more 
relevant of  that of  the 
orbital motion. The 
rotation epicycle is 
dominant. 



Optimal detection by re-sampling 
procedure 

 Because of the frequency variation, the energy of the wave 
doesn’t go in a single bin, so the SNR is highly reduced. 

 A solution to the problem of the varying frequency is to use a 
non-uniform sampling of the received data: if the sampling 
frequency is proportional to the (varying) received frequency, 
the samples, seen as uniform, represent a constant frequency 
sinusoid and the energy goes only in one bin of their FFT. 

 Every point of the sky (and every spin-down or spin-up 
behavior) needs a particular re-sampling and FFT. 



Resampling 

Original data: 

The frequency is 
varying, we sample 
non-uniformly 
(about 13 samples 
per period). 

The non-uniform 
samples, seen as 
uniform, give a 
perfect sinusoid and 
the periodogram of  
the samples has a 
single “excited” bin. 



Optimal detection 

1 month 4 months 1 year

FFT length (number of points) 2.6E+09 1.0E+10 3.1E+10

Sky points 2.1E+11 3.4E+12 3.1E+13
Spin-down points (1st ) 2.2E+04 3.5E+05 3.1E+06
Spin-down points (2nd ) 1.0E+00 1.1E+01 3.2E+02
Freq. points (500 Hz) 1.3E+09 5.0E+09 1.6E+10
Total points 6.0E+24 6.5E+28 4.8E+32

Comp. power (Tflops) 1.0E+12 1.5E+16 3.6E+19

Sensitivity (nominal) 1.2E-26 6.0E-27 3.6E-27
(background 10 -̂23*Hz -̂0.5)
Sens. for 10^9 candidates 7.4E-26 4.1E-26 2.7E-26

It is supposed a 2 kHz sampling frequency. For the computation power, an 
highly optimistic estimation is done and it is not considered the computation 
power needed by the re-sampling procedure. The decay time (spindown) is 
taken higher than 104 years. 



Some concepts and numbers on computing 
power 

 The “crude” computing power of a computer system is often expressed in 
FLOPS (floating point operations per second) 

 A today (2004) workstation has a computing power of 3 GFLOPS (109 
FLOPS) 

 A today big supercomputer (a cluster of many PCs or a server with many 
CPUs) has a computing power of about 10 TFLOPS (1013 FLOPS) 

 The Moore Law says that the computing power of standard computers 
doubles every 1.5 years 

 The crude computing power may be not meaningful, because in many 
algorithms (the vast majority) the access time to the RAM or to the disk is 
dominant. 

 The problem is not only to have a big computer, but also have an 
algorithm that exploits at best its architecture and minimizes the accesses 
to RAM and disk. 



Introduction to the hierarchical search 

 Because the “optimal detection” cannot be done in 
practice, we have proposed the use of a sub-optimal 
method, based on alternating “incoherent” and 
“coherent” steps 

 The first incoherent step consist of Hough or Radon 
transform based on the collection of short FFT 
periodograms. From this step we “produce” candidates 
of possible sources 

 Then, with a coherent step, we “zoom” on the 
candidates, refining the search 

 Then a new incoherent step can be done, and so on, 
until the full sensitivity is reached  



Short periodograms and short FFT 
data base 

 The basis of the hierarchical search method is the 
“short FFT data base” 

 It is used for producing the periodograms for the 
incoherent steps and the data for the coherent 
step 

 How long should be a “short FFT” ? 



Short periodograms and short FFT 
data base (continued) 

 What is the maximum time length of an FFT such that a Doppler 
shifted sinusoidal signal remains in a single bin ? (Note that the 
variation of the frequency increases with this time and the bin width 
decreases with it) 

 The answer is 
 
 
 
 where TE and RE are the period and the radius of the “rotation 

epicycle” and νG is the maximum frequency of interest of the FFT. 
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Short periodograms and short FFT 
data base 
(continued) 

 As we will see, we will implement an algorithm that starts 
from a collection of short FFTs (the SFDB, short FFT 
data base). 

 Because we want to explore a large frequency band (from 
~10 Hz up to ~2000 Hz), the choice of a single FFT 
time duration is not good because, as we saw, 

 
 
 so we propose to use 4 different SFDB bands. 
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The 4 SFDB bands 

Band 1 Band 2 Band 3 Band 4 

Max frequency of the band 
(Nyquist frequency) 2000 500 125 31.25 

Observed frequency bands 1500 375 93.75 23.438 

Max duration for an FFT (s) 2445 4891 9782 19565 

Length of the FFTs 4194304 4194304 2097152 1048576 

FFT duration (s) 1048 4194 8388 16777 

Number of FFTs (4 months) 20063 5015 2508 1254 

SFDB storage (GB; one year) 510 130 33 9 



Radon transform (stack-slide 
search) 

Here is a time-frequency power 
spectrum, composed of  many 
periodograms (e.g. of  about one 
hour).  

In a single periodogram the signal is 
low, and so is for the average of  all 
the periodogram, but if  one shift the 
periodograms in order to correct the 
Doppler effect and the spin-down, 
and then take the average, we have a 
single big peak. 

In this case, for the average of  n 
periodograms, the noise has a chi-
square distribution with 2*n degrees 
of  freedom (apart for a normalization 
factor)  



Radon transform (reference) 

  Johann Radon, "Uber die bestimmung von funktionen durch ihre integralwerte langs 
gewisser mannigfaltigkeiten (on the determination of  functions from their integrals 
along certain manifolds," Berichte Saechsische Akademie der Wissenschaften, vol. 29, 
pp. 262 - 277, 1917.  
 
 Johann Radon was born on 16 Dec 1887 in Tetschen, Bohemia (now Decin, Czech 
Republic) and died on  25 May 1956 in Vienna, Austria 

 



Hough transform 

Another way to deal with the changing frequency signal, 
starting from a collection of  short length periodograms, 
is the use of  the Hough transform (see P.V.C. Hough, 
“Methods and means for recognizing complex 
patterns”, U.S. Patent 3 069 654, Dec 1962) 



Linear Hough transform 

 Suppose to have an image of one particle track in a bubble 
chamber, i.e. a number of aligned points together with some 
random points. The problem is to find the parameters p and 
q of a straight line  

y = p * x + q 
 The “Hough transform” transform each point in the plane 

(x,y) to a straight line  
q = - x * p + y   

 in the plane (p,q) and conversely a straight line in the (x,y) 
plane to a point in the (p,q) plane: the coordinate of the 
point in this plane are the parameters of the straight line. 



Peak Map - 1 

Peak map (or bubble 
chamber image) with a 
straight line with 
equation 

y = 1.5 * x +1 



Hough Map - 1 

Hough map of  the preceding 
image. This can be seen as a 2-
dimension histogram: for each 
point in the peak map, a set of  
aligned bins representing a 
straight line in the Hough map 
is increased by 1. 

Note the peak at about p = 1.5 
and q = 1 



Peak Map - 2 

The same of  the preceding 
peak map, but with lower 
SNR (signal-to-noise ratio) 



Hough map - 2 

More noisy Hough 
map. The peak is 
always present, but 
there are also others, 
spurious. 

Note that the noise is 
not uniform on the 
whole map. 



Peak Map - 3 

Peak map with 4 straight 
lines: 

y = - x + 2 

y = - x – 2 

y = x – 1 

y = - 2 * x + 1 



Hough map - 3 

All the 4 straight line 
have been detected, 
with correct parameters. 



Time-frequency peak map 

Using the SFDB, create the periodograms and then a time-
frequency map of  the peaks above a threshold (about one 
year observation time). 
Note the Doppler shift pattern and the spurious peaks. 



Celestial coordinates Hough map 

 The Hough transform answers the question:  
 
 - Which is the place of the sky from where the signal 

comes, given a certain Doppler shift pattern ? 
 
 It maps the peaks of the time-frequency power spectrum 

(peak map) to the set of points of the sky. 



Hough map – single annulus 

Suppose you are investigating on 
the possibility to have a periodic 
wave at a certain frequency.  

For every peak in the time-
frequency map (in the range of  
the possible Doppler shift), we 
take the locus of  the points in the 
sky that produce the Doppler 
shift equal to the difference 
between the supposed frequency 
and the frequency of  the peak. 
Because of  the width of  the 
frequency bins, this is not a circle 
in the sky, but an annulus. 



Hough map – single annulus 
(detail) 



Hough map – source reconstruction 

For every peak, we compute the 
annulus and enhance by one the 
relative pixels of  the sky map. 

Doing the same for all the 
peaks, we have a two-dimension 
histogram, with one big peak at 
the position of  the source. 

Normally, because the motion 
of  the detector that has a big 
component on the ecliptical 
plane, there is also a “shadow” 
false peak, symmetrical respect 
this plane. 



Source reconstruction - detail 



Time-frequency power spectrum 
 Hough transform (summary) 

  using the SFDB, create the periodograms and then a time-
frequency map of  the peaks above a given  threshold 
 
  for each spin-down parameter point and each   
    frequency  value, create a sky map (“Hough map”);  to 
    create a Hough map, sum an annulus of   “1” for each peak; 
    an histogram is then created, that must have a  
    prominent peak at the “source” 
  



Hierarchical method 

• Divide the data in (interlaced) chunks; the length is such that 
the signal remains inside one frequency bin 

• Do the FFT of  the chunks; this is the SFDB 

• Do the first “incoherent step” (Hough or Radon transform) 
and take candidates to follow 

• Do the first “coherent step”, following up candidates with 
longer “corrected” FFTs, obtaining a refined SFDB (on the fly) 

• Repeat the preceding two step, until we arrive at the full 
resolution 



Hierarchical search 

     Data           ->       SFDB          ->   peak map     ->    Hough map 

Then : 

-select candidates on Hough map (with a threshold) 

-zoom on data with the “known” parameters 

-repeat the procedure with zoomed data, increasing the 
length of the FFT in steps, until the maximum sensitivity is 
reached 



Incoherent steps: Radon transform 

• using the SFDB, create the periodograms and then a time-frequency map 

• for each point in the parameter space, shift and add  the periodograms, 
in order to all the bins with the signal are added together 

• the distribution of  the Radon transform, in case of  white noise signal, is 
similar to the average (or sum) of  periodograms: a χ2 with 2 N degrees of  
freedom, apart for a normalization. 



Ratio between Hough and Radon CR 
(quadratic) vs threshold 



Hough vs Radon 

What we gain with Hough ? 
 
• about 10 times less in computing power 
• robustness respect to non-stationarities and 
disturbances 
• operation with 2-bytes integers (in the simplest case) 
 

What we lose ? 
 
• about 12 % in sensitivity (can be cured) 
• more complicate analysis 



“Radon after Hough” procedure 

This procedure (RaH) gives the Radon sensitivity (~12 % 
more) with almost the same computing power price of  
Hough. 

It is based on doing the Radon procedure on a little 
percentage of  points in the parameter space, selected by the 
Hough procedure (“Hough pre-candidates”). 

The computing power price is less than 10% more. 

In this way, obviously, the Hough robustness is lost. 

A good policy could be to follow-up both the Hough and 
RaH candidates. 



Coherent steps 

With the coherent step we partially correct the 
frequency shift due to the Doppler effect and to the 
spin-down. Then we can do longer FFTs, and so we 
can have a more refined time-frequency map. 

This steps is done only on “candidate sources”, 
survived to the preceding incoherent step. 



Coherent follow-up 

 Extract the band containing the candidate frequency (with a 
width of the maximum Doppler effect plus the possible intrinsic 
frequency shift) 

 Obtain the time-domain analytic signal for this band (it is a 
complex time series with low sampling time (lower than 1 Hz) 

 Multiply the analytic signal samples for               , where ti is the 
time of the sample, and ∆ωD is the correction of the Doppler 
shift and of the spin-down. 

 Create a new (partial) FFT data base now with higher length 
(dependent on the precision of the correction) and the relative 
time-frequency spectrum and peak map 

 Do the Hough transform on this (new incoherent step). 

D ij te ω− ∆



A problem... 

 The coherent follow-up is done on time bases of about 
one day or more.  

 At these time scales the observed frequency is split in 
side bands (at distance of one sidereal day frequency and 
multiples) 

 This is due to the rotation of the Earth and to the 
radiation pattern of the antenna 

 This effect spreads the source power in more spectral 
bins, so, if it is not cured, we have lower SNR than 
expected 



Simplified case: 

Virgo is displaced to the 
terrestrial North Pole and 
the pulsar is at the 
celestial North Pole. 

The inclination of the 
pulsar can be any. 

Periodic source spectroscopy 



Simplified case 
in red the original frequency 
 
Depending on the orientation of the source axis, we have different type of 
polarization in the received signal. 

Circular 
polarization 

Circular 
polarization 
(reverse) 

Linear 
polarization 

Mixed 
polarization 

 1  

2 

3 

4 



General case 
(actually Virgo in Cascina and pulsar in GC) 

Linear polarization Circular polarization 



Wobbling triaxial star 



Solution: the spectrum matched 
filtering 

 With this procedure the power spread in different 
frequency bins is “collected”  

 There is a matched filter for every possible value 
of the polarization parameters: in practice a bank 
of about one thousand filters 
 



The spectral filter 
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Hierarchical search – alternative 
method 

 If the threshold is low, the number of candidates can be very big and 
the computing cost of this step, with the spectrum filtering, can be 
very high. 

 An alternative hierarchical policy is to divide the observation period in 
two pieces and compute the Hough transform (and obtain candidates) 
for each of them, then take the coincidences between the two sets of 
candidates and “follow” only these one. 

 Theoretically there is a loss in sensitivity of a factor 2^(1/4)~1.18, but 
in practice the computing burden is much lower (may be of a factor 
10^6), so the the threshold can be put at lower SNR and the coherent 
follow-up can be done on longer time base. Also the spectral filtering 
can be done with no problems 



Dither effect 

 The amplitude of the sinusoidal signal in the data 
is so low that can be 100 or more times lower 
than the sampling quantum (the minimal 
amplitude variation detectable by the analog-to-
digital converter): how is it possible to detect the 
signal? 

 It is possible because of the presence of the noise 
(that, in this case, has a positive effect). This 
effect is called dither effect. 



Dither effect (program) 

 Let us see the following matlab procedure: 
 >> N=2^22; 
 >> x=(1:N)*0.1; 
 >> y=0.01*sin(x);  creation of a 0.01 amplitude sinusoid 
 >> n=randn(1,N);  creation of normalized gaussian noise 
 >> yy=round(y+n);   discretization (quantum = 1) 
 >> sp=abs(fft(yy)).^2;  power spectrum 
 >> plot(sp(1:N/2)) 

 Note that, discretizing only y, we obtain 0. 



Dither effect (spectrum) 

The frequency peak due to 
the tiny signal, that was 
invisible because the 
discretization, appears. 

Not always the noise is an 
enemy ! 



Other Material 

The following material is complementary 
 
  It is intended to clarify some points 
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Sensitivity 
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Hierarchical search results 

SFDB band Band 1  Band 2 Band 3 Band 4 

Doppler bandwidth (Hz) 0.2 0.05 0.0125 0.0032 

Angular resolution in the sky (rad) 0.0038 0.0038 7.6294E-03 1.5259E-02 

Number of pixels in the sky 8.6355E+05 8.6355E+05 2.1589E+05 5.3972E+04 

Number of independent frequencies 1.5729E+06 1.5729E+06 7.8643E+05 3.9322E+05 

Spin down parameters (only order 1) 140 140 70 35 

Tot. number of parameters (one freq) 1.207E8 1.207E8 1.509E7 1.886E6 

Number of operations  for one peak 6.5884E+03 6.5884E+03 3.2942E+03 1.6471E+03 

Total number of operations 6.348E+18 1.587E+18 4.959E+16 1.55E+15 

Comp. Pow. for the 1st step (GFlops) 1030 257 8.0 0.251 

Overall computing power (Gflops) 2000 500 15 0.5 

Nominal sensitivity  6.17E-26 4.36E-26 3.67E-26 3.08E-26 

Practical sensitivity  1.23E-25 8.72E-26 7.33E-26 6.17E-26 

Minimum decay time considered is 10^4 years 



Hough transform vs SNR 



Noise distributions - linear 

The black line is the 
noise distribution for the 
optimum detection, the 
red one is for the 
hierarchical procedure 
(hp) with Radon, the 
blue and green are for 
hp with Hough (the 
green is the gaussian 
approximation) and the 
dotted line is for a short 
FFT. 

There were 3000 pieces. 



Loss respect to the optimum 

In this plot there is the SNR 
loss (respect to the optimum 
detectipon) for the 
hierarchical procedure with 
Hough (blue) and Radon 
(red) and a short FFT 
(black). 

In abscissa there is the SNR.. 



Tuning a hierarchical search 

The fundamental points are: 

• the sensitivity is proportional to   

• the computing power for the incoherent step is 
proportional to  

• the computing power for the coherent step is 
proportional to              , but it is also proportional to the 
number of  candidates that we let to survive. 

log FFTT

4
FFTT

3
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What is a candidate source ? 

The result of  an analysis is a list of  candidates (for example, 
106 candidates). 

Each candidate has a set of  parameters: 

• the frequency at a certain epoch 

• the position in the sky 

• 2~3 spin-down parameters 



Detecting periodic sources 

The main point is that a periodic source is permanent. So one 
can check the “reality” of  a source candidate with the same 
antenna (or with another of  comparable sensitivity) just doing 
other observations. 

So we search for “coincidences” between candidates in 
different periods.  

The probability to have by chance a coincidence between two 
sets of  candidates in two 4-months periods is of  the order of  
10-20. 



Coincidences 

In case of  non-ideal noise, the preceding f.a. probabilities can be not reliable, 
nevertheless there are some methods to validate the survived candidates. One is the 
coincidence method. 

If  n1 and n2 candidates survive in two different four-months periods (for example n1 = 
n2 =10, at the third step, where the number of  points in the parameter space NP is 
about 6.e24) , we can seek for coincidences between the two sets, i.e. check if  there are 
some with equal (or similar) parameters. 

The expected number of  coincidences (or the probability of  a coincidence) is 

1 2
COIN

n n
n NP

⋅
=

with the values of  our example, nCOIN=6.e-22 . 



False alarm probability 

In the case of  the periodic source search with the hierarchical 
method, the false alarm probability is normally embarrassingly low. 
This for two reasons: 

- the hierarchical procedure produces at the first step a high number 
of  candidates and for them the f.a. probability is practically 1, but 
already at the second step the candidates disappear and it plunges at 
very low levels. 

- if  some false candidates survive, the coincidence with the survived 
candidates (with the same parameters) in other periods or in other 
antennas lower the f.a. probability at levels of  absolute impossibility.  



Computing Hough f.a. probability 

Let us start from a random peak map. Let p (~0.1) be the density of  the peaks 
on the map. The value k of  a pixel of  the Hough map follows a binomial 
distribution  

kMk pp
k
M −−








)1(

where M is the number of  spectra.   

If  there is a weak signal, the expected value of  k is enhanced by an 
amount proportional to the square of  the amplitude of  the signal. So if  
there is a certain (linear) SNR at a certain step, at the following one, with 
a 16 times longer TFFT , there is a CR four times higher.  



“Old” scheme of the detection 

step TFFT N points SNR 
(linear) 

CR Normal 
probability 

Candidates 

1 ~1 h 1.5 e15 2 4 3.1 e-5 5 e10 

2 15 h 9.8 e19 4 16 ~1 e-55 1 e-35 

3 10 d 6.4 e24 8 64 … … 

4 ~4 m 4.2 e29 ~16 ~256 … … 

TOBS = 4 months        TFFT = 3355 s  



Sensitivity 

25
4 4

22 2.8 10h
CR

OBS FFT

Sh
T T

−
= ≈ = ⋅

⋅

The signal detectable with a CR of  4 (5.E10 candidates in the 
band from 156 to 625 Hz) is given by 

with TOBS=4 months, TFFT=3355 s, Sh=3E-23 Hz-1/2 . 
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