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Continuous waves (CW)

 We classify as continuous those GW signals 

with duration much longer than the typical 

observation time of detectors. 

 CW are typically emitted by sources with a 

mass quadrupole moment varying in time in a 

quasi-periodical way.

 For Earth-bound detectors the most 

interesting sources of CW involve deformed 

neutron stars (NS), isolated or in binary 

systems.

 We know that potential sources of CW exist: 

2400+ NS are observed (mostly pulsars) and 

O(109) are expected to exist in the Galaxy.
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Signal characterization

 Shape: sinusoidal, possibly two harmonics.

 Location: our galaxy, more probable near the center or in 

globular clusters; nearest (and more detectable) sources are 

isotropic; sometimes it is known, often not (blind search).

 Frequency: down, limited by the antenna sensitivity; up to 1~2 

kHz; sometimes it is known , often not (blind search).

 Amplitude:

I3 is the principal moment of  inertia along the rotation axis, e is the ellipticity (I2-I1)/I3
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Simple periodic signal

The simplest way to describe a CW signal is simply

If we have a chunk of length T0 of this signal embedded in (white 
Gaussian) noise, we know that the better detection algorithm is 
the matched filter, i.e. the convolution between the data x(t) 
(signal+noise) and the signal shape f(t)

(f(t) could be just sin(ω0t)). This produce the output y(t) with 
the maximum value of the SNR.
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Fourier transform

If the angular frequency is unknown, the ideal way to detect the 
signal is the estimation of the power spectrum, that normally is 
obtained taking the square of the absolute value of the Fourier 
transform:

This estimation is called periodogram.

The resolution in frequency f (=ω/2π) is Δf=1/T0 . The power 
spectrum describes the frequency distribution of the noise power, 
that is independent from T0 . The power of the signal goes all in a 
band that has a width inversely proportional to T0 . So the spectral 
(quadratic) signal to noise is proportional to T0 .
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Power spectrum by FFT periodogram

If  the frequency (and the phase) of  the signal is not known, the better way to 
detect a periodic signal is by the estimate of  the power spectrum. This can 
be obtained by a periodogram, i.e. the square modulus of  the Fourier 
transform of  the data.

Remember that the power spectrum is, by definition, the Fourier transform of  
the autocorrelation Rxx()=E[x(t)x(t+)].

PS with FFT periodogram is like a set of  lock-in or matched filters at n 
frequencies.

An efficient algorithm to compute the (discrete) Fourier transform of  the 
sampled data is the Fast Fourier Transform (FFT). The number of  floating point 
operations (FLOP) needed to compute an FFT of  length n (that should be a 
power of  2) is about

5 * n * log2(n)

instead of  something proportional to n2.
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Example
Frequency  100 Hz
Noise   σ = 1
Signal  A = 0.03
Power SNR ~ 0.001
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Power spectrum
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Power spectrum by FFT 
periodogram (some details)

Discrete Fourier transform

Frequency resolution 
(if  the signal power goes all in a

single bin, the noise power in the

bin is proportional to the bin width)

Signal-to-noise ratio (linear)

less than the SNR of  the matched filter
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Power spectrum as the mean of 
periodograms

The distribution of  the amplitude of  the bins of  the periodogram 

of  a chunk of  white gaussian noise is exponential. It remains 

exactly the same increasing the length of  the periodogram, and 

the same is obviously for the mean and the variance.

To reduce the variance of  the noise spectrum, one way is by 

dividing the chunk of  data in N pieces, take the periodograms of  

each piece and then make the average.

In this case both the variance and the signal is reduced and the 

(linear) SNR is reduced by a factor       .

The distribution is a c2 with 2N degrees of  freedom.

4 N
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Sampling

Obviously we work with sampled data (with sampling time Δt) and 
we can compute the Fourier transform with an FFT (fast Fourier 
transform) algorithm.

In case of real sampled data the transform has a bandwidth 
B=1/2T0 and the estimation of the power spectrum is symmetric 
around 0. 

In case of complex data, this symmetry is not present and the 
bandwidth is B=1/T0 .
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Problem: the frequency is not constant !

If things were as in this simple way, we should do the largest FFT and 
obtain the best sensitivity, but in reality the frequency is not constant. This 
because:

 there is a spin-down due to the loss of energy (in some cases a spin-
up could be present)

 the source can be in a binary star system, and so an “intrinsic” 
source Doppler shift

 due to the orbital and rotational motion of the Earth (and of the 
antenna), there is a detector Doppler shift, dependent on the 
direction of the source

 Because of the variation of the direction of the source in the frame of 
the detector, we have a sidereal day variation of the phase and 
amplitude of the detected signal

 sometimes a glitch (sudden variation of the rotational frequency of the 
star) can appear 

 a small phase noise can be present
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Glitches

In the first figure there is the period variation of  the Vela Pulsar during about 12 years.

In the second figure there is a more schematic view (frequency on ordinates).

The frequency of  glitches depends on the age of  the star (younger stars have more 
glitches) and is not a general feature.

Glitches are related to star-quakes.
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Detector Doppler effect

The Doppler variation 

of  the frequency in a 

period of  one year for 

a low (ecliptical) 

latitude source.

The original frequency 

is 100 Hz and the 

maximum variation 

fraction is of  the order 

of  0.0001
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Doppler effect - zoom

Zoom of  the preceding 

figure. Note the daily 

variations.

Very roughly the 

Doppler effect can be 

seen as the sum of  two 

“epicycles” (Ptolemaic 

view)
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Doppler effect  (zoom)

Frequency variation on 

about 4 days.

Note that the problem is 

not in the presence of  the 

Doppler shift, but in the 

time variation of  the 

Doppler shift. So the effect 

of  the rotation is more 

relevant of  that of  the 

orbital motion. The 

rotation epicycle is 

dominant.
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Peculiarity of the periodic sources

The variation of  the frequency of  a periodic source is a big problem, but is an 

important instrument 

• to have physical information on the source, e.g. the sky direction, that can 

be known with high precision

• to exclude disturbance and artifacts: in fact the Earth Doppler effect is 

strong signature for the real signals.

The periodic sources are the only type of  gravitational signal that can be 

detected by a single gravitational antenna with certainty (if  there is enough 

sensitivity to include the source among the candidates, the false alarm 

probability can be reduced at any level of  practical interest).

Once one detects a periodic source, it remains there to be confirmed 

and studied by others. It is not only a detection, it is a discovery.
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Frequency correction

If the  frequency variation is known or can be modeled by a 
set of templates, we can correct the frequency variation and 
reduce the problem to the simple one.

Normally this can be done up to a certain degree.

The frequency correction can be achieved with a variety of 
methods using two base techniques:

 the resampling

 the heterodyne
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Solution: re-sampling procedure

Because of  the frequency variation, the energy of  the wave 

doesn’t go in a single bin, so the SNR is highly reduced.

A solution to the problem of  the varying frequency is to use a 

non-uniform sampling of  the received data: if  the sampling 

frequency is proportional to the (varying) received frequency, 

the samples, seen as uniform, represent a constant frequency 

sinusoid and the energy goes only in one bin of  their FFT.

Every point of  the sky (and every spin-down or spin-up 

behavior) needs a particular re-sampling and FFT.
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Resampling

Original data:

The frequency is 

varying, we sample 

non-uniformly 

(about 13 samples 

per period).

The non-uniform 

samples, seen as 

uniform, give a 

perfect sinusoid and 

the periodogram of  

the samples has a 

single “excited” bin.

21



Solution: the sub-heterodyne 
and the complex signal

To simplify the problem it is useful to convert the real two sided 
data to complex single sided. This can be accomplished by the use 
of the Fourier transform.

The small frequency variation signal can be written, in the complex 
form, as

If we know, or hypothesize with a set of templates, φ(t), we can 
correct the signal multiplying h(t0 for exp(-jΔφ(t)) and we obtain 
the simple signal

     0exph t j t t    

   0exph t j t  
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Use of sub-heterodyne

To correct the variation of frequency due to the Doppler effect or to 
the spin-down, we should hypothesize an enormous number of 
separate points in the parameter space, for each of them we 
should do a different correction.

This problem will lead to the use of hierarchical procedures.
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Interaction with the antenna: 
the 5-vector formalism

After the frequency correction, the signal can be described as a complex 
signal

where the tensors are in bold Arial font, h0 is the wave amplitude and κ+

and κx are positive constant with                . 

The response of the antenna to a gravitational wave depends on the 
relative direction of the source and has the form of the linear combination 
of five complex exponentials 

where the vk are 5 complex constants and Ωsid is the Earth sidereal 
angular frequency. 

So, if we have enough frequency resolution in the spectrum, we see 5 
peaks.
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Some cases
(actually Virgo antenna and pulsar in Galactic Center)

Linear polarization Circular polarization

Note that in the first case the complex constant v0 = 0
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The radiation pattern

The interference of the five frequencies 
give rise to the radiation pattern of the 
antenna.

From the estimation of the five 
complex numbers, we can estimate the 
polarization parameters, the amplitude 
and the phase of the wave.

Because the degree of freedom of 
the 5 complex numbers are 10 and 
the gravitational waves has only 4 
d.o.f., we can use the estimation of 
that 5 as a filter against false 
alarms. 
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Optimal detection

1 month 4 months 1 year

FFT length (number of points) 2.6E+09 1.0E+10 3.1E+10

Sky points 2.1E+11 3.4E+12 3.1E+13

Spin-down points (1st ) 2.2E+04 3.5E+05 3.1E+06

Spin-down points (2nd ) 1.0E+00 1.1E+01 3.2E+02

Freq. points (500 Hz) 1.3E+09 5.0E+09 1.6E+10

Total points 6.0E+24 6.5E+28 4.8E+32

Comp. power (Tflops) 1.0E+12 1.5E+16 3.6E+19

Sensitivity (nominal) 1.2E-26 6.0E-27 3.6E-27

(background 10 -̂23*Hz -̂0.5)

Sens. for 10^9 candidates 7.4E-26 4.1E-26 2.7E-26

It is supposed a 2 kHz sampling frequency. For the computation power, an 

highly optimistic estimation is done and it is not considered the computation 

power needed by the re-sampling procedure. The decay time (spindown) is 

taken higher than 104 years.
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Introduction to the hierarchical search

 Because the “optimal detection” cannot be done in 
practice, we have proposed the use of  a sub-optimal 
method, based on alternating “incoherent” and 
“coherent” steps

 The first incoherent step consist normally of  Hough or 
Radon transform based on the collection of  short FFT 
periodograms. From this step we “produce” candidates 
of  possible sources

 Then, with a coherent step, we “zoom” on the 
candidates, refining the search

 Then a new incoherent step can be done, and so on, 
until the full sensitivity is reached 
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Dither effect

 The amplitude of  the sinusoidal signal in the data 
is so low that can be 100 or more times lower 
than the sampling quantum (the minimal 
amplitude variation detectable by the analog-to-
digital converter): how is it possible to detect the 
signal?

 It is possible because of  the presence of  the 
noise (that, in this case, has a positive effect). 
This effect is called dither effect.
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Dither effect (program)

 Let us see the following matlab procedure:

 >> N=2^22;

 >> x=(1:N)*0.1;

 >> y=0.01*sin(x);  creation of a 0.01 amplitude sinusoid

 >> n=randn(1,N);  creation of normalized gaussian noise

 >> yy=round(y+n);   discretization (quantum = 1)

 >> sp=abs(fft(yy)).^2;  power spectrum

 >> plot(sp(1:N/2))

 Note that, discretizing only y, we obtain 0.
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Dither effect (spectrum)

The frequency peak due to 

the tiny signal, that was 

invisible because the 

discretization, appears.

Not always the noise is an 

enemy !
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Other Material

The following material is complementary

It is intended to clarify some points
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Number of points in the
parameter space
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Sensitivity
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FFT and Doppler effect
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Backup (old)

36



Short periodograms and short FFT 
data base

 The basis of  the hierarchical search method is the 

“short FFT data base”

 It is used for producing the periodograms for the 

incoherent steps and the data for the coherent 

step

 How long should be a “short FFT” ?
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Short periodograms and short FFT 
data base (continued)

What is the maximum time length of  an FFT such that a Doppler 

shifted sinusoidal signal remains in a single bin ? (Note that the 

variation of  the frequency increases with this time and the bin width 

decreases with it)

The answer is

where TE and RE are the period and the radius of  the “rotation 

epicycle” and G is the maximum frequency of  interest of  the FFT.
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Short periodograms and short FFT 
data base
(continued)

As we will see, we will implement an algorithm that starts 

from a collection of  short FFTs (the SFDB, short FFT 

data base).

Because we want to explore a large frequency band (from 

~10 Hz up to ~2000 Hz), the choice of  a single FFT 

time duration is not good because, as we saw,

so we propose to use 4 different SFDB bands.

1

2
max GT 





39



Hough transform

Another way to deal with the changing frequency signal, 

starting from a collection of  short length periodograms, 

is the use of  the Hough transform (see P.V.C. Hough, 

“Methods and means for recognizing complex 

patterns”, U.S. Patent 3 069 654, Dec 1962)
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Linear Hough transform

Suppose to have an image of  one particle track in a bubble 
chamber, i.e. a number of  aligned points together with some 
random points. The problem is to find the parameters p and 
q of  a straight line 

y = p * x + q

The “Hough transform” transform each point in the plane 
(x,y) to a straight line 

q = - x * p + y

in the plane (p,q) and conversely a straight line in the (x,y)
plane to a point in the (p,q) plane: the coordinate of  the 
point in this plane are the parameters of  the straight line.
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Peak Map - 1

Peak map (or bubble 

chamber image) with a 

straight line with 

equation

y = 1.5 * x +1
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Hough Map - 1

Hough map of  the preceding 

image. This can be seen as a 2-

dimension histogram: for each 

point in the peak map, a set of  

aligned bins representing a 

straight line in the Hough map 

is increased by 1.

Note the peak at about p = 1.5 

and q = 1
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Peak Map - 2

The same of  the preceding 

peak map, but with lower 

SNR (signal-to-noise ratio)
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Hough map - 2

More noisy Hough 

map. The peak is 

always present, but 

there are also others, 

spurious.

Note that the noise is 

not uniform on the 

whole map.
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Peak Map - 3

Peak map with 4 straight 

lines:

y = - x + 2

y = - x – 2

y = x – 1

y = - 2 * x + 1
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Hough map - 3

All the 4 straight line 

have been detected, 

with correct parameters.
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Time-frequency peak map

Using the SFDB, create the periodograms and then a time-

frequency map of  the peaks above a threshold (about one 

year observation time).

Note the Doppler shift pattern and the spurious peaks.
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Hierarchical method

• Divide the data in (interlaced) chunks; the length is such that 

the signal remains inside one frequency bin

• Do the FFT of  the chunks; this is the SFDB

• Do the first “incoherent step” (Hough or Radon transform) 

and take candidates to follow

• Do the first “coherent step”, following up candidates with 

longer “corrected” FFTs, obtaining a refined SFDB (on the fly)

• Repeat the preceding two step, until we arrive at the full 

resolution
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Coherent steps

With the coherent step we partially correct the 

frequency shift due to the Doppler effect and to the 

spin-down. Then we can do longer FFTs, and so we 

can have a more refined time-frequency map.

This steps is done only on “candidate sources”, 

survived to the preceding incoherent step.
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Coherent follow-up

 Extract the band containing the candidate frequency (with a 
width of  the maximum Doppler effect plus the possible 
intrinsic frequency shift)

 Obtain the time-domain analytic signal for this band (it is a 
complex time series with low sampling time (lower than 1 Hz)

 Multiply the analytic signal samples for               , where ti is the 
time of  the sample, and D is the correction of  the Doppler 
shift and of  the spin-down.

 Create a new (partial) FFT data base now with higher length 
(dependent on the precision of  the correction) and the relative 
time-frequency spectrum and peak map

 Do the Hough transform on this (new incoherent step).

D ij t
e

 
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Hierarchical search results

SFDB band Band 1 Band 2 Band 3 Band 4

Doppler bandwidth (Hz) 0.2 0.05 0.0125 0.0032

Angular resolution in the sky (rad) 0.0038 0.0038 7.6294E-03 1.5259E-02

Number of pixels in the sky 8.6355E+05 8.6355E+05 2.1589E+05 5.3972E+04

Number of independent frequencies 1.5729E+06 1.5729E+06 7.8643E+05 3.9322E+05

Spin down parameters (only order 1) 140 140 70 35

Tot. number of parameters (one freq) 1.207E8 1.207E8 1.509E7 1.886E6

Number of operations  for one peak 6.5884E+03 6.5884E+03 3.2942E+03 1.6471E+03

Total number of operations 6.348E+18 1.587E+18 4.959E+16 1.55E+15

Comp. Pow. for the 1st step (GFlops) 1030 257 8.0 0.251

Overall computing power (Gflops) 2000 500 15 0.5

Nominal sensitivity 6.17E-26 4.36E-26 3.67E-26 3.08E-26

Practical sensitivity 1.23E-25 8.72E-26 7.33E-26 6.17E-26

Minimum decay time considered is 10^4 years
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Hough transform vs SNR
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Noise distributions - linear

The black line is the 

noise distribution for the 

optimum detection, the 

red one is for the 

hierarchical procedure 

(hp) with Radon, the 

blue and green are for 

hp with Hough (the 

green is the gaussian 

approximation) and the 

dotted line is for a short 

FFT.

There were 3000 pieces.
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Loss respect to the optimum

In this plot there is the SNR 

loss (respect to the optimum 

detectipon) for the 

hierarchical procedure with 

Hough (blue) and Radon 

(red) and a short FFT 

(black).

In abscissa there is the SNR..
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Tuning a hierarchical search

The fundamental points are:

• the sensitivity is proportional to  

• the computing power for the incoherent step is 

proportional to 

• the computing power for the coherent step is 

proportional to              , but it is also proportional to the 

number of  candidates that we let to survive.

log FFTT

4
FFTT

3

FFTT
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What is a candidate source ?

The result of  an analysis is a list of  candidates (for example, 

106 candidates).

Each candidate has a set of  parameters:

• the frequency at a certain epoch

• the position in the sky

• 2~3 spin-down parameters
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Detecting periodic sources

The main point is that a periodic source is permanent. So one 

can check the “reality” of  a source candidate with the same 

antenna (or with another of  comparable sensitivity) just doing 

other observations.

So we search for “coincidences” between candidates in 

different periods. 

The probability to have by chance a coincidence between two 

sets of  candidates in two 4-months periods is of  the order of  

10-20.
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Coincidences

In case of  non-ideal noise, the preceding f.a. probabilities can be not reliable, 

nevertheless there are some methods to validate the survived candidates. One is the 

coincidence method.

If  n1 and n2 candidates survive in two different four-months periods (for example n1 = 

n2 =10, at the third step, where the number of  points in the parameter space NP is 

about 6.e24) , we can seek for coincidences between the two sets, i.e. check if  there are 

some with equal (or similar) parameters.

The expected number of  coincidences (or the probability of  a coincidence) is

1 2
COIN

n n
n

N
P




with the values of  our example, nCOIN=6.e-22 .
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False alarm probability

In the case of  the periodic source search with the hierarchical 

method, the false alarm probability is normally embarrassingly low. 

This for two reasons:

- the hierarchical procedure produces at the first step a high number 

of  candidates and for them the f.a. probability is practically 1, but 

already at the second step the candidates disappear and it plunges at 

very low levels.

- if  some false candidates survive, the coincidence with the survived 

candidates (with the same parameters) in other periods or in other 

antennas lower the f.a. probability at levels of  absolute impossibility. 
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Computing Hough f.a. probability

Let us start from a random peak map. Let p (~0.1) be the density of  the peaks 

on the map. The value k of  a pixel of  the Hough map follows a binomial 

distribution

kMk pp
k

M





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


)1(

where M is the number of  spectra.  

If  there is a weak signal, the expected value of  k is enhanced by an 

amount proportional to the square of  the amplitude of  the signal. So if  

there is a certain (linear) SNR at a certain step, at the following one, with 

a 16 times longer TFFT , there is a CR four times higher. 
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Sensitivity

25

4
4

2
2 2.8 10h

CR

OBS FFT

S
h

T T



   


The signal detectable with a CR of  4 (5.E10 candidates in the 

band from 156 to 625 Hz) is given by

with TOBS=4 months, TFFT=3355 s, Sh=3E-23 Hz-1/2 .
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